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1 Harmonic Functions

Definition 1.1. (Harmonic functions). Let D C R? be a domain and let h(z,y) be a continuous real-valued
function with continuous partial derivatives. Then h is harmonic on D if h satisfies Laplace’s equation,
hge + hyy = 0.

Theorem 1.1. Let f(z) = pu+ iv be analytic on D. Then p and v are harmonic on D.

Example 1.2. Given f(z) = 1/z is analytic on D := C\ {0},

z T . Y

— = —1
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f(z) =

. v
1 and v are harmonic on D. K

Example 1.3. Let p(x,y) = 22(1 — y). Find a real function v(z,y) on R? s.t. f(z) = pu +iv is entire (i.e.,
find the harmonic conjugate of ).

pe=2(1—y)=v, = v=2y—y*+C(z) = v, =C'()

—py =20 =v, =C'(a) = Cla)=2> = v=2—y" +2°

f(2) =2(1 —y) +1i(2y — y* + 2?) is entire.

2 Conformal Maps

Definition 2.1. Let D be a domain, p € D, and f : D +— C. The function f is said to be conformal if it
preserves angles at p. Furthermore, f is conformal on D if f is conformal Vp € D.

Theorem 2.1. Suppose f is analytic on D, p € D, and f'(p) #0, Vp € D. Then f is conformal on D.

Example 2.2. Let f(z) =az+b, a#0. Then f'(z) =a #0, so f is conformal on C.

Example 2.3. Let f(2) =22 = f/(2) =22#0 <= 2 #0, so f is conformal on C \ {0}.

Theorem 2.4. Let D C C be a domain and w be a non-constant function that is analytic at p € C. If
w = w(p) + am(z — p)™ + (higher order terms)

where m is the smallest integer for which f) (p) # 0, then the effect of the angle 0 is mf.

Example 2.5. Let f(z) = 22. Then f/(z) = 22+ 2 # 0, so f is conformal on C \ {0}. Furthermore,
f"(z) =2 # 0 so the effect is § — 26 at z = 0.



3 Contour Integrals

Definition 3.1. Let 2(¢) : [a,b] — C and C : z(]a, b]) be the piecewise differentiable curve C' parameterized
by z(t). Let f(z) be a complex-valued function defined on C. Then the contour integral is defined as

b
/ F(2) dz = / F(0)2 (1) dt
C a
IfC’:C’1+C’2+~~~C’N,then

[rera=3 [ e

1, y>0

, 2(t) =t +4t? : [—1,1] = C. Evaluate the integral z) dz.
MEEID 11 gral [, f(2)

Example 3.1. Let f(z) = {

0 1
/f(z) dz:/ 1(1 + 3it?) dt+/ A1+ 3it?) dt =4+
c —1

0

Definition 3.2. If a curve C is parameterized by z(t) : [a,b] — C, then the equivalent curve with opposite
orientation is C'~ parameterized by z(t) := z(—t) : [-b, —a] — C~. Furthermore,

/Cf(z) dz=—/07 f(z) dz

Parameterizing straight lines: Let P,Q € C. Then z(t) = Q + t(P — Q) : [0,1] — C where z(0) = @, and
z(1) = P is a straight line connecting P and Q.

4 Important Theorems

Theorem 4.1. (Cauchy-Goursat theorem). Let C' be a simple, closed curve and f(z) be an analytic function
on C' and its interior. Then
JRCE
C

Example 4.2. By the Cauchy-Goursat theorem,

. z
sin 2% — 14 cos?(5z) + e®
|z41|=m 622_423+4

=0

Theorem 4.3. (ML inequality). Let f(z) < M and L = [, |dz|. Then

/f(z) dz| <ML
c
Example 4.4.
3 —92 3 -9
[ s [
lo]=2 2°—1 =2 2°—1

||z — 1]
=427 x 2)
= 167

3 2
< / M |dz|, by the triangle inequality
|z|=2

Example 4.5. Let C be a simple, closed curve containing 0 in its interior. Let f(z) = 2™. Then

j{ n 2mi, n=-—1
2" dz =
c 0, otherwise



Theorem 4.6. (Cauchy integral formula). Let C be a simple, closed curve with point p in its interior. Let
f be analytic on and inside C. Then
1 (2)

C2mi Joz—p

f(”)(p)n!fc( AR

2mi z—p)ntl

f(p)

Furthermore,

Example 4.7. Evaluate

eiz
/ ———— dz, where C:|z+i] =10
c(z-1)?

Note that f(z) =e”*, p=1, and n = 1.

e 2mi d , .
dz = 222 2 (e## el = i, P
/C (z—1)2 T dz(e JJe=1 e

for (a) |z| =2, (b) |z + 3| =2, (c) |2| = 100, and (d) |z — 100| = 1.
(a) f(2) =1/(z+4),p=0,and n =2

fos=Sire=1
c 2 (z+4) 2 32

Example 4.8. Compute

(b) f(2) =1/23, n =0, and p = —4.

dz 271 Iy
T Sy =
_7{; 23(z+4) 0! F=4) 32

(c¢) Add answers in (a) and (b) to get 0. (d) 0 by Cauchy-Goursat.

5 Standard Theorems in Complex Analysis

Theorem 5.1. If f is analytic, f' is also analytic.
Theorem 5.2. (Liouville’s theorem). The only bounded entire functions are constants.

Theorem 5.3. (Mazimum modulus principle). Let f be analytic on domain D C C and fiz p € D. If
lf(2)| < |f(p)|, Yz € D, then f is constant on D.

Variant: Assume D is bounded, f is anaytic on D, and f extends to a continuous function on D. If f(z)
non-constant on D, then |f(z)| obtains its max on OD.

Theorem 5.4. (Fundamental theorem of algebra). Let p(z) € C be a polynomial of degree > 1. Then Ir € C
s.t. p(r)=0.

Theorem 5.5. (Morera’s theorem). Let D C C be a domain and f(z) be a continuous complex-valued
function on D. Suppose that

/f(z) dz=0, VCCD
c

Then f(z) is analytic on D.



6 Power Series

Definition 6.1. (Radius of convergence). If both limits exist, they will yield the same R.

R = lim

n—oo

an+1

Example 6.1. Compute radius of convergence for > >, ”‘Z’n (z+29)"

L N P S|
i~ (n+1)5+| 5 SR

oo (224397

R = lim

n—oo

Example 6.2. Compute radius of convergence for

n=1 n
— [2(z+3i/2)]" =2 3i\"
SRR 2 (o1 d
n=1 n=1
1 1 1
R=1lm —=lm — = —
274

Example 6.3. Compute radius of convergence for > > St

1 1
lim = = -

n—oo /2 2

Converges if |z| > 1/2 and diverges if |z| < 1/2.

7 Laurent Series

Definition 7.1. A Laurent series centered at p € C is the sum

> aGonr=d Zanz_

n—=—oo n=1
where b,, = c_,, for n > 1 and a,, = ¢,, for n > 0.

Theorem 7.1. If3r,R € [0,00] sty o cn(z—p)™ defines an analytic function onr < |z —p| < R, then

. . a

R = lim or R= lim n
n—oo |an| n—00 | p41
bnt1

r= lim {|a,| or r=1 nE
n—oo — 00 n

Theorem 7.2. Assume that 0 <r < R < oo and f(z) is analytic on r < |z —p| < R. Then f(z) is equal to
a Laurent series on this annular region. Then the coefficients of the series are

ap = %% 7f(2)n+1 dz
T J|z—p|=R’ (Z _p)

by, = L f(2)(z=p)" 1 dz

21 |z—p|=r'

Remark 7.3. (Geometric series). If Isingularity at z = p, then the Laurent expansion about p is

_ 1
- Z cw) lw] < 15
n= O
1 c\"
1—c/w ; (E) el >

where p lies on |z| = ¢ (think radius of convergence).



Example 7.4. Show that the Laurent series for

5z

1o =237%

in the annular region 1 < |z — 1| < 4 is given by

) = 3(—=1)n
D D T e
—1)2 n+1
n=1 (Z 1) n=0 ant
Let w = z — 1 and observe that 2> + 2 — 6 = (2 + 3)(z — 2) = (w + 4)(w — 1). Hence

52 Swtl) 3 2
24+z2-6 (wH+d)(w-1) w+4d w-1

On |w| > 1, we have:

On |w| < 4 we have:

3 3 1 3 = (—1)" = 3(=1)" = 3(=1)"
= — — — n _ n __ _ 1 n
w+ 4 4 <1—|—w/4) 4; 4n w ; 4n+1 w ; An+1 (z )

Thus on 1 < |w| =]z — 1] < 4:
5 =2 = 3(—1)n .
z2+z—6:2( —1)”+Z =

Theorem 7.5. (Riemann extension theorem). Suppose that f(z) is both analytic and bounded on 0 <
|z —p| < R. Then f(z) extends analytically to z = p.

Theorem 7.6. (Taylor series). If b, = 0,Yn > 1, then

> fr(n)
f(Z):Zf (p)(z_p)n

n!

Example 7.7.
oo (oo}
) (_1)nz2n+1 (_l)nz2n
smzzzi, cosz:zi
— (2n+1)! —  (2n)!
oo 22n+1 s ZZn
sinhz:zi, coshz:Z—
o (2n+1)! o (2n)!
Example 7.8. Compute the Taylor series for f(z) = 1/(1 + 2)%.
(14 2) 142 = o
(oo} (oo}
f(z)=F'(z) = Z(—l)"“nz"‘l = Z(—l)"(n +1)2"
n=1 n=0

142

Example 7.9. Compute the Taylor series for f(z) = log ;== on the branch where log1 = 0.

1 1 2 -
— / _ _ _ § 2

o0 2n+1

_ S 2n . z
f(z)-/?%z dz—2n2::02n+1




8 Isolated Singularities

Definition 8.1. Given an analytic function f(z) on 0 < |z —p| < R < o0,

=3 Gl e

Consider the point p. The function f(z) has a
1. Removeable singularity at p if there is no principal part (b, = 0).
2. Pole singularity at p if 3m > 1 s.t. b, =0, Vn > m, b, # 0 for some n (truncated principal part).
3. Essential singularity at p if b, # 0, Vn > 1.

Example 8.1. (Removeable singularity). f(z) = sinz/z.

sing 1 Z Yzl i (—1)nz2n
2n+1 _n:0 (2n +1)!
Example 8.2. (Pole singularity). f(z) = cosz/z.
) z2n y o2

COSZ_iz 7+Z

Example 8.3. (Essential singularity). f(z) = e!/%.

| = 1
el :z:on'z”:1+z:ln'z"

Theorem 8.4. (Classifying singularities).
1. p is a removeable singularity <= lim,_,, f(z) € C exists.
2. p is a pole singularity <= lim,_,, f(z) = oco.

3. p is an essential singularity <= lim,_,, f(z) DNE.

9 Zeroes of an Analytic Function

Definition 9.1. Let f(z) be analytic on |z — p| < R. Assume f(z) # 0 on |z —p| < R and f(p) = 0. By
Taylor, f(2) = an(z — p)" + ant1(z — p)"*1 + -+ where a,, # 0 for some n > 1. We say that p is a zero of
f(z) of order n.

Theorem 9.1. Suppose f(z) is analytic on a domain D and for some p € D, we have f™ (p) =0, n € Z.
Then f(z) =0 on D.

Theorem 9.2. Let f(z) = G p)M + (zb’g)M IR
M atp <= h:=1/f has a zero 0f07’d67’M>O at p.

P p, bas # 0 be analytic. Then f has a pole of order

10 Residues

Theorem 10.1. (Finding residues). Let by = Res, f(z) be a residue of f(z) at the point p.
1. Removeable singularities: Res,f(z) = 0.

2. Simple pole: Find the Laurent series then find by OR compute by = lim,_,, f(2)(z — p).



3. Pole of order m:
1 dmfl

by = lim e [f(z)(z=p)"]

Example 10.2. f(z) = e!'/>.

el/z—i L —1+1—|—§: 1 — Respe’/? =1
o On!z”_ z 2n!z” 0 o
n= n=

2

Example 10.3. f(z) = e!/?

1

el/z2zl+7+ 4o = Respe!/*" =0
z

224

Example 10.4. Let f(z) = 1/(z? + 1). Find the residue at z = i.

Set g(2) = 1/(z +1i) = g(i) = 1/(21) # 0, f(2) = g(2)/(z —i). By Taylor,

g"(i)
2!

(2 — i)+

g'/(i)(z_i)+... — Resif(z) :g(i) :2li

9(2) = g(i) + ¢'(i)(z — i) +

1) = zg(—Z)z' - zg(—l)z‘ 0+,
Example 10.5. f(z) = -<+tL . Compute Res;f(2).

(z—m)®"

Set g(z) =e*+ 1, g(m) =e™+1#0, f(z) =g(2)/(z —m)3. Observe that 7 is a pole of order 3.
g"(r)

9(z) = g(m) + ¢ (M) (z = 7) + == (2 = m)* 4o
_ 9z g(m) g'(m) g"(m) g ()
IO = o =GP T o T2, T 3 T
_g'(m) e
= Res f(z) = 5 =3
Theorem 10.6. (Residue theorem). Let f(z) be analytic on and inside a simple, closed curve C, except for
a finite number of singular points sing(f) = {p1,p2,...,pr} nside C and assume C has ccw orientation.
Then
k
% f(z) dz =2mi Z Res,, f(2)
¢ n=1
Furthermore,

ST Respf(2) =0 = —Ressof(2) = Resus (ij<))

p€{sing(f)Uoc}

Z Respf(z) + ReSothe'r polesf(z) = _Resoof(z) = R@Sw:() (;f (1>)
peS

where p is of a high multiplicity.
Example 10.7. Evaluate

del/z J
/2—2 ZIO+2 *

/ f(2) dz = —2mi Resco f(2) = 2mi ReSw:oizf <1)
|2]=2 w

Set f(z) = 2%¢'/#/(2'° 4 2). Then

w
lfl_lw_gew_l we” e?
w2’ \w) w2w 1042 w2l42w®  w(l+2wi0)

271 Resy—o = 27 Ilulino wm = 2mi



Example 10.8. Let f(z) = m. Compute
/ f(z) dz and f(z) dz
|z|=2 |z+2|=3

By residue thm,

2
2=0: aim @] =

j{ f(2) dz = 2mi(Reso f(z) + Res_4f(2)) =0
|z+2|=3

Iy

} - jl{z=2 f(z) dz = 27i Reso f(z) = 5

Example 10.9. Compute Resg f(z) where

£(2) 2124220 +1
zZ) =
25(24 = 522 41)
Use a geometric series:
2124220 +1 2242541 (5, L\ 1l =/(5, L4\"
— — — — = — — — 1 t' f
f(2) 25(17[322724]) o %(22 z) 257;)(2z z) + analytic tn
1 5 25 25 21
= — (14222 —2* 4+ ==2*) + another analytic fn = Respf(z) = -1+ = =
25 2 4 4 4

Example 10.10. Let
1
f(z) = 2100(; —4)2

Compute Resg f(2).

1 1
Resof(z) + Res; f(z) = —Resoo f(2) := Resw:oﬁf <w>
1 1 100
ReSwzoﬁf <w> = Resw:o(lQﬁW =0

1\ 100 .
Res; f(z) = <z100) (1) = —o1 = 1007
= Resof(z) = —100:

Theorem 10.11. Suppose f(z) is analytic on and inside a simple, closed ccw-oriented curve C, except on

sing(f) inside C. Then
MO
?{; 72) dz = 2mi (Z mult(zg) + Z mult(pk)>

where mult(zy) is multiplicity of zeroes at z, and mult(pg) is multiplicity of poles at z;. We denote
Niero,c(f) := > mult(z) and Npole,c(f) := Y mult(pg).

Definition 10.1. A function is meromorphic on domain D € C if it has at worst isolated pole singularities
on D, i.e., holomorphic on all of D except for a set of isolated points, which are poles of the function.

Theorem 10.12. (Argument principle). Given a simple, closed ccw-oriented curve C' and f meromorphic
in interior of C' and analytic and non-zero on C,

%AC arg f(Z) = Nzcro,C(f) - Npolc,C(f)

where LHS is the winding number of f(C) about 0.



Example 10.13. Find the winding number of f(z) =2", n>1, C:|z| <e.
By the argument principle, iAC arg f(z) = n.

Theorem 10.14. (Rouché’s theorem). Given functions f(z) and g(z) analytic on and inside a simple,
closed curve C' and assume |f(z)| > |g(z)| on C. Then f(z) and f(z) + g(z) have the same number of zeroes
(including multiplicity) inside C'.

Example 10.15. Determine the roots in f(z) = 22% — 62% + 2 + 1 = 0 in the region 1 < 2] < 2.

e Set C' = {|z| =1}, f(2) = =622, g(2) =22° + 2 = 1. Then |f(2)] =6 > 4 > |g(z)|. By Rouché, f has
2 roots inside |z| = 1.

e Set C = {|z| = 2}, f(2) =225 g(2) = =622+ 2 = 1. Then |f(2)| =64 > 24 +2 =1 > |g(2)|. By
Rouché, f has 5 roots inside |z| = 2.

e Thus, 1 <|z| <2 has 5 — 2 = 3 roots (including multiplicity).

11 Applications of Residues
Example 11.1. (Cauchy principal values). Evaluate

22 +1
(2 +m)(x2 +7/2)

/ i) de, () =

Note that [~ f(z) de =% [*_ f(z) dz. First put

oo

(2) = 22 +1 _ 2241
(@2 +m)(22+7/2)  (z24iyT)(z —ivT) (2 + i /7)2) (2 — i\/7/2)

Now consider the contour Cg = C; U Cy. Then we can write

Y
(2) dz = f(z) dz+ f(z) dz
Cr Ch Cs
G By the ML inequality,
R?+1
> dz| = 0
R ol C, R o, (2) dz (RQ_W>(R2_7T/2)(7TR),R—>OO,R S—0

Then fCR f(z) dz = f_RR f(x) dz by definition of a contour integral. By the residue theorem,

™

lim (2) dz = 2mi [Resiﬁf(z) + Resi\/mf(z)} = %(\/5— 1) (\/ﬁ-l-l)

R— o0 Cr
Therefore,

Example 11.2. (Improper integrals of trig fns). We wish to evaluate integrals of the form

/ r(x) {cosa?} dzx, r(z)is a rational fn.

sinx

Notice that

/ r(z)e™ dr = / r(z)cosx dx +i/ r(z)sinx dx

— 00 —00 —0o0



Example 11.3. Evaluate
/ *° cos 2z
o
We take the same contour as in Example 11.1. Then,
S(tm [ fyae) = [ <52 4,
R—o0 Cs o 0o $2 + 4

f(z) dz

C

2iz

224—4‘

<

By residue theorem,

%z 421 2t

> cos2x T
I dr = —e4
/0 2244 T

2iz 2iz
/C Z;;H = 2miResg; f(z) = 2mi lim c T
R

Therefore,

Remark 11.4. CAUTION:

lim
R—o0

2
/ (3(2)871' dZ’ #0, b/ccos2z is not an odd fn.
4 T4 + 4

Example 11.5. (Definite integrals of trig fns).

27 -1 —1
z+2z70 z—2 dz F
F(cosf,sinf) df = F , - — =2mR Z|<1}
/0 (cosf,sin @) sz|—1 ( 5 % ) » miRespe|s|<1) 7

CAUTION: Don’t forget to divide by 7 when converting the sin term and computing the residue!

Example 11.6. Let —1 < a <1 and a # 0. Evaluate

d/nQﬂ de
o l+4+acosf

/2” do 7/ 1 @7/ dz
o l4acosd \Z\:ll—i—a(”fl) iz l2j=1 22 +22/a+1

We compute

2
Roots of denominator: z = {z; = -1 + Ly/1—a2 20 = -1 — 1/T— 42} . Only 2, is inside |2| = 1.

. /2” do . 1 2
———— = 2mi—Res, =
o 1l+acosf ia Y224 22/a+1  1-—a2

12 Laplace Transform

Definition 12.1. The Laplace transform is defined as

L(F() = F(s) = / T et di

Theorem 12.1. (Inverse Laplace transform). Let s € C be a complex variable and f be a real-valued
function in domain t > 0. Assume f is piecewise continuous and exponentially bounded. Then

k—+ioco
Ft) = L-Y(F(s)) = —— /k Fls)e™t ds

218 Ji_ioo

10



By residue theorem,

ft)y =LY (F(s)) = > Res,(F(s)e™)

p: F(s) singular at p
Furthermore,

ﬂw=£*wm»=Rmﬂ%;amF(1)

w

Example 12.2. Find the inverse Laplace transform of

s
Fls)= — °
©) = G rDe -
Apply theorem 12.1.
st
F(s)est — se
e = G De -1
Sest e—t
Res y—————5 = ———
G D) —1)2 4
Res sest _2mid [ se® (1 +2t)et
"s+D)(s—1)2  1ds\s+1)|, 4

et (142t)€
fO=—+ =

11



