
kbandit

May 4, 2022

1 Introduction
In this Jupyter notebook, we explore the k-bandit problem using three different approaches: random
selection, epsilon-greedy, and upper confidence band (UCB) methods.

[30]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import random

[31]: df = pd.read_csv('Ads_Optimisation.csv')
df.head()

[31]: Ad 1 Ad 2 Ad 3 Ad 4 Ad 5 Ad 6 Ad 7 Ad 8 Ad 9 Ad 10
0 1 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0
2 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 0 0 0

[41]: df.shape

[41]: (10000, 10)

1.1 Random Selection
[45]: N = 10000

d = 10
ads_selected = []
total_reward = 0

[46]: for n in range(N):
ad = random.randrange(d)
ads_selected.append(ad)
reward = df.values[n, ad]
total_reward += reward

1

[69]: rand_results = pd.Series(ads_selected).value_counts(normalize=True)
print(f'total reward: {total_reward}')
print(rand_results)

total reward: 3846
4 0.48910
7 0.07995
0 0.06040
9 0.05535
3 0.05415
8 0.05365
1 0.05350
2 0.05250
6 0.05085
5 0.05055
dtype: float64

1.2 Epsilon Greedy
We compute the action value function, qt(a), for all arms at each timestep t. Our goal is to choose
the action which will maximize qt at each step.

Qt(a) =

∑t−1
i=1 Ri · ⊮Ai=a∑t−1

i=1 ⊮Ai=a

(1)

where Ri is the reward.

To optimize the computation, we can keep a running average:

Qt(a) =
Qt−1(a)Nt(at) +Rt · ⊮At=a

Nt(at)
(2)

= Qt−1(a) +
Rt −Qt−1(a)

Nt(at)
(3)

[170]: N = 10000
d = 10
ads_selected = []
action-value quantities
numbers_of_selections = [0] * d
sums_of_reward = [0] * d
avg_reward = [0] * d
total_reward = 0
exploration probability
epsilon = 0.5

[171]: for n in range(N):
if random.uniform(0, 1) < epsilon:

explore
ad = random.randrange(d)

2

else:
greedy
for i in range(d):

if numbers_of_selections[i] > 0:
avg_reward[i] = sums_of_reward[i] / numbers_of_selections[i]

ad = np.argmax(avg_reward)

ads_selected.append(ad)
numbers_of_selections[ad] += 1
reward = df.values[n, ad]
sums_of_reward[ad] += reward
total_reward += reward

[172]: eps_greedy_results = pd.Series(ads_selected).value_counts(normalize=True)
print(f'total reward: {total_reward}')
print(eps_greedy_results)

total reward: 1993
4 0.5461
0 0.0530
1 0.0527
3 0.0522
5 0.0505
8 0.0504
2 0.0503
7 0.0494
9 0.0492
6 0.0462
dtype: float64

Upon exploration, the epsilon-greedy method is more accurate for a moderate to high value of
epsilon, i.e., epsilon above 0.1. If epsilon is low, then the greedy method may choose an incorrect
value, i.e., not enough exploration.

1.3 Upper Confidence Bound (UCB)

[15]: import math
ads_selected = []
numbers_of_selections = [0] * d
sums_of_reward = [0] * d
total_reward = 0

1. Play each of K actions once to obtain initial values for mean rewards corresponding to each
action.

2. For each round t = K:

(a) Let Nt(a) denote # times an action was played.

3

(b) Play the action at maximizing the following equation

UCB1 = Q(a) +

√
2 ln t
Nt(a)

(4)

*note that the 2 in the above equation can be any constant

3. Observe reward and update mean reward for the chosen action.

[67]: for n in range(N):
ad, max_ub = 0, 0
for i in range(d):

if (numbers_of_selections[i] > 0):
avg_reward = sums_of_reward[i] / numbers_of_selections[i]
delta_i = math.sqrt(2*math.log(n+1) / numbers_of_selections[i])
updating UCB
ub = avg_reward + delta_i

else:
setting initial UCB
ub = 1e400

if ub > max_ub:
max_ub = ub
ad = i

ads_selected.append(ad)
numbers_of_selections[ad] += 1
reward = df.values[n, ad]
sums_of_reward[ad] += reward
total_reward += reward

[70]: ucb_results = pd.Series(ads_selected).value_counts(normalize=True)
print(f'total reward: {total_reward}')
print(ucb_results)

total reward: 3846
4 0.48910
7 0.07995
0 0.06040
9 0.05535
3 0.05415
8 0.05365
1 0.05350
2 0.05250
6 0.05085
5 0.05055
dtype: float64

4

1.4 Conclusion
Clearly ad 5 (index 4) has the highest total reward proportion, which is the true value in this
specific dataset. Further, UCB was a much better method than random selection and epsilon-
greedy selection.

5

	Introduction
	Random Selection
	Epsilon Greedy
	Upper Confidence Bound (UCB)
	Conclusion

