
Python 3 Recursion

Eddie Guo

October 2019

1 Introduction to Recursion
1.1 Topics Covered

(i) What is recursion?

(ii) Conditions for termination

(iii) Stack frames

1.2 Recursion
• Recursion occurs when fn (or method) calls itself, either directly or indirectly

• If problem can be resolved by solving simple part of it & resolving rest of big problem in same way,
can write a fn that solves simple part of problem then calls itself to resolve rest of problem

• For recursion to terminate, 2 conditions must be met:

– Must be 1/more simple cases that do NOT make recursive calls (base case)

– Recursive call must somehow be simpler than original call (change state to move towards base
base)

1 def factorial(n):
2 ’’’Return factorial of number.
3 ’’’
4 if (n == 0 or n == 1): # base case
5 answer = 1
6 else:
7 answer = n * factorial(n-1)
8 return answer

1.3 Fn Activations & Frames

• When fn invoked, frame/stack frame corre-
sponding to that fn created & pushed onto the
stack

• Frame stores all local vars assoc w/ that fn call

• Frame created when fn invoked & destroyed
when fn finishes

• If fn invoked again, new frame is created for it
w/ all its local vars

1.4 Multiple Activations of Fn

• When we invoke recursive fn, fn becomes active

• B4 it’s finished, it makes recursive call to same
fn

• This means that when recursion used, there’s

>1 copy of same fn active at once

• Each active fn has its own frame which contains
indep copies of its local vars

• These frames stored on the call stack

1


	Introduction to Recursion
	Topics Covered
	Recursion
	Fn Activations & Frames
	Multiple Activations of Fn


