1
1.1

Python 3 Recursion

Eddie Guo

October 2019

Introduction to Recursion
Topics Covered

(i) What is recursion?

(ii) Conditions for termination

1.2

Recursion

(iii) Stack frames

e Recursion occurs when fn (or method) calls itself, either directly or indirectly

e If problem can be resolved by solving simple part of it & resolving rest of big problem in same way,
can write a fn that solves simple part of problem then calls itself to resolve rest of problem

e For recursion to terminate, 2 conditions must be met:

1.3

1.4

— Must be 1/more simple cases that do NOT make recursive calls (base case)

— Recursive call must somehow be simpler than original call (change state to move towards base

base)

factorial(n):

>?2Return factorial of number.
230

if (n == 0 or n == 1): # base case
answer = 1

else:
answer = n * factorial(n-1)

return answer

Fn Activations & Frames

When fn invoked, frame/stack frame corre-
sponding to that fn created & pushed onto the
stack

Frame stores all local vars assoc w/ that fn call

Multiple Activations of Fn

When we invoke recursive fn, fn becomes active

B4 it’s finished, it makes recursive call to same
fn

This means that when recursion used, there’s

Frame created when fn invoked & destroyed
when fn finishes

If fn invoked again, new frame is created for it
w/ all its local vars

>1 copy of same fn active at once

Each active fn has its own frame which contains
indep copies of its local vars

These frames stored on the call stack



	Introduction to Recursion
	Topics Covered
	Recursion
	Fn Activations & Frames
	Multiple Activations of Fn


