Python 3 Exceptions & Handling Errors

Eddie Guo

October 2019

1 Introduction to Exceptions

1.1

Topics Covered

(i) What are exceptions?

(ii) Raising exceptions

1.2

1.3

1.4

1.5

What are Exceptions?

Input validation != exception handling

Exception: event during execution of program
that disrupts normal flow of program

Exceptions in Python

Python script raises an exception where error
detected

Python interpreter raises exception when it de-
tects run-time error

Can explicitly raise an exception

—’2013’ + 1 — TypeError: cannot con-
catenate ’str’ and ’int’ objects

— 175 + cmput*13 — NameError: name
‘cmput’ is not defined

Why Use Exceptions?

Separating error-handling code from regular code

Catching exceptions

Assertions

Exceptions allow us to handle errors/excep-
tional conditions

In Python, exception is obj that reps an error

— 365 * (12/0) — ZeroDivisionError: in-
teger division or modulao by zero

Accessing non-existent dictionary key will raise
KeyError exception

Searching list for non-existent value will raise
ValueError exception

Calling non-existent method will raise At-
tributeError exceptiont

Python documentation for exceptions

Deferring decisions about how to respond to exceptions

Providing mech for specifying diff kinds of exceptions that can arise in program

Exception Handling Blocks
If you have code that may raise exception, place
code in try: followed by except:
Don’t catch exception? Entire program crashes.

except w/o explicit exception will catch all re-
maining exceptions

2

except may name none/one/multiple excep-
tions as parenthesized tuple
except (RuntimeError,

NameError) :
[do something herel

TypeError,

https://docs.python.org/3/library/exceptions.html

1.6 Multiple Except Clauses

try may have >1 except clause to specify han-
dlers for diff exceptions

At most, one handler will be executed

Handlers only handle exceptions that occur in

1.7 The try Statement

If no exception raised by code w/in try block (or
methods called w/in try block), code executes
normally & all except blocks skipped

If exception arises in try block, execution of try
block terminates execution immediately & ex-
cept is sought to handle exception

1.8 Propagating Exceptions

An exception will bubble up call stack until it:

— Reaches method w/ suitable handler or

— Propagates thru main stack (1st method
on call stack)

1 try:
2 £
3 s

open(’myfile.txt’, ’r?’)
f.readline ()
int(s.strip())
5 except IOError:
print (’File does not exist or cannot be read.’
except ValueError:
print (’Could not convert data to an integer’)
except:
print (’Unexpected error?)

! i

1.9 Raising Exceptions

e What can be raised as exception?

— Any standard Python exception
— New instance of exception w/ custom ar-

try:
print (’Raising an exception?’)
raise Exception(’CMPUT’, ’2747)

except Exception as inst: # the exception instance
print (inst.args) # arguments stored in .args

(S

oo W

6 X, y = inst.args # unpacks args
- print(’x =7, X, 7y =:, 7y:)
1.10 else & finally Clause

e else clause CAN’T come b4 try & except (i.e.,
must follow all except clauses)

e Code in else clause must be executed if clause
does not raise exception

corresponding try clause, not in other handlers
of same try statement

e Go from specific excpetions to more general
ones b/c Python reads top-down

. If appropriate except clause found, it’s ex-
ecuted

. Elif exception propagated to method or
outer try block

. Elif no handler found — unhandled ex-
ception & execution stops w/ message

e If exception not caught by any method, excep-
tion treated like error: stack frames displayed &
program terminates

)

If this were first, no IOErrors or ValueErrors will be caught

raise # can explicitly propagate exceptions using raise

guments

— Instances of our own specialized exception
classes

e finally will execute regardless if error was
raised (executed under ALL circumstances)

e finally useful if you wanna perform “cleanup”
operations b4 exiting method (ex: closing file)
& avoids duplicating code in each except clause

1
2
3
1

1
2
3
1
5

10
11

13

def divide(x, y):

try:
result = x / y
except ZeroDivisionError:
print(’division by zero!’)
else:
print (’the result is?’,
finally:
print (’thanks for dividing!’)

result)

finally clause is executed
in any event

* no exception

* division by 0

* type error

|

Type error is re-raised after the
finally clause since no except
exists for it.

>>> divide (2,
result is 2.0
thanks for dividing
>>> divide (2, 0)
division by zero!
thanks for dividing
>>> divide ("CMPUT",
thanks for dividing
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3,
TypeError: unsupported operand
type(s) for /: 'str' and 'str'

1)

n175m)

in divide

2 Summary: Possible Execution Paths

3

1. No exception occurs

(a) Execute try block
(b) Execute else & finally clauses

(c) Execute rest of method

2. Exception occurs & is caught

(a) Execute try block until 1st exception o
curs

(b) Execute 1st except clause that matches ex-

ception

Assertions

e Assertion is statement that raises Assertion-

Error exception if condition not met

e assert Expression[, Arguments]

o If assertion fails, Python uses given arg as arg

for AssertionError

def KelvintoFahrenheit (temperature):

assert (temperature >= 0), ’Colder than
return ((temperature - 273) * 1.80 + 32

if __mame__ == ’__main__"’:
try:
fahrenheit = KelvintoFahrenheit (-23)
print (fahrenheit)
except AssertionError as my_error:
print (my_error.args)
12 # Output
(Colder than absolute zero!,)

(c) Execute finally clause

(d) Execute rest of method

3. Exception occurs & is not caught

curs
C_
curs

Execute finally clause

handled like any other exception

e Good practice to place assertions at start of fn
to check for valid input, & after fn call to check

for valid output

absolute zero!’

Execute try block until 1st exception oc-

Execute try block until 1st exception oc-

Propagate exception to calling method

e AssertionError exceptions can be caught &

	Introduction to Exceptions
	Topics Covered
	What are Exceptions?
	Exceptions in Python
	Why Use Exceptions?
	Exception Handling Blocks
	Multiple Except Clauses
	The try Statement
	Propagating Exceptions
	Raising Exceptions
	else & finally Clause

	Summary: Possible Execution Paths
	Assertions

