
Python 3 Exceptions & Handling Errors

Eddie Guo

October 2019

1 Introduction to Exceptions
1.1 Topics Covered

(i) What are exceptions?

(ii) Raising exceptions

(iii) Catching exceptions

(iv) Assertions

1.2 What are Exceptions?

• Input validation != exception handling

• Exception: event during execution of program
that disrupts normal flow of program

• Exceptions allow us to handle errors/excep-
tional conditions

• In Python, exception is obj that reps an error

1.3 Exceptions in Python

• Python script raises an exception where error
detected

• Python interpreter raises exception when it de-
tects run-time error

• Can explicitly raise an exception

– ’2013’ + 1 → TypeError: cannot con-
catenate ’str’ and ’int’ objects

– 175 + cmput*13 → NameError: name
’cmput’ is not defined

– 365 * (12/0) → ZeroDivisionError: in-
teger division or modulao by zero

• Accessing non-existent dictionary key will raise
KeyError exception

• Searching list for non-existent value will raise
ValueError exception

• Calling non-existent method will raise At-
tributeError exceptiont

• Python documentation for exceptions

1.4 Why Use Exceptions?
• Separating error-handling code from regular code

• Deferring decisions about how to respond to exceptions

• Providing mech for specifying diff kinds of exceptions that can arise in program

1.5 Exception Handling Blocks

• If you have code that may raise exception, place
code in try: followed by except:

• Don’t catch exception? Entire program crashes.

• except w/o explicit exception will catch all re-
maining exceptions

• except may name none/one/multiple excep-
tions as parenthesized tuple

1 except (RuntimeError , TypeError ,
NameError):

2 [do something here]

1

https://docs.python.org/3/library/exceptions.html

1.6 Multiple Except Clauses

• try may have >1 except clause to specify han-
dlers for diff exceptions

• At most, one handler will be executed

• Handlers only handle exceptions that occur in

corresponding try clause, not in other handlers
of same try statement

• Go from specific excpetions to more general
ones b/c Python reads top-down

1.7 The try Statement

• If no exception raised by code w/in try block (or
methods called w/in try block), code executes
normally & all except blocks skipped

• If exception arises in try block, execution of try
block terminates execution immediately & ex-
cept is sought to handle exception

1. If appropriate except clause found, it’s ex-
ecuted

2. Elif exception propagated to method or
outer try block

3. Elif no handler found → unhandled ex-
ception & execution stops w/ message

1.8 Propagating Exceptions

• An exception will bubble up call stack until it:

– Reaches method w/ suitable handler or
– Propagates thru main stack (1st method

on call stack)

• If exception not caught by any method, excep-
tion treated like error: stack frames displayed &
program terminates

1 try:
2 f = open(’myfile.txt’, ’r’)
3 s = f.readline ()
4 i = int(s.strip ())
5 except IOError:
6 print(’File does not exist or cannot be read.’)
7 except ValueError:
8 print(’Could not convert data to an integer ’)
9 except: # If this were first , no IOErrors or ValueErrors will be caught

10 print(’Unexpected error’)
11 raise # can explicitly propagate exceptions using raise

1.9 Raising Exceptions

• What can be raised as exception?

– Any standard Python exception
– New instance of exception w/ custom ar-

guments

– Instances of our own specialized exception
classes

1 try:
2 print(’Raising an exception ’)
3 raise Exception(’CMPUT ’, ’274’)
4 except Exception as inst: # the exception instance
5 print(inst.args) # arguments stored in .args
6 x, y = inst.args # unpacks args
7 print(’x =’, x, ’y =’, ’y’)

1.10 else & finally Clause

• else clause CAN’T come b4 try & except (i.e.,
must follow all except clauses)

• Code in else clause must be executed if clause
does not raise exception

• finally will execute regardless if error was
raised (executed under ALL circumstances)

• finally useful if you wanna perform “cleanup”
operations b4 exiting method (ex: closing file)
& avoids duplicating code in each except clause

2

1 def divide(x, y):
2 try:
3 result = x / y
4 except ZeroDivisionError:
5 print(’division by zero!’)
6 else:
7 print(’the result is’, result)
8 finally:
9 print(’thanks for dividing!’)

2 Summary: Possible Execution Paths
1. No exception occurs

(a) Execute try block

(b) Execute else & finally clauses

(c) Execute rest of method

2. Exception occurs & is caught

(a) Execute try block until 1st exception oc-
curs

(b) Execute 1st except clause that matches ex-
ception

(c) Execute finally clause

(d) Execute rest of method

3. Exception occurs & is not caught

(a) Execute try block until 1st exception oc-
curs

(b) Execute try block until 1st exception oc-
curs

(c) Execute finally clause

(d) Propagate exception to calling method

3 Assertions
• Assertion is statement that raises Assertion-
Error exception if condition not met

• assert Expression[, Arguments]

• If assertion fails, Python uses given arg as arg
for AssertionError

• AssertionError exceptions can be caught &
handled like any other exception

• Good practice to place assertions at start of fn
to check for valid input, & after fn call to check
for valid output

1 def KelvintoFahrenheit(temperature):
2 assert (temperature >= 0), ’Colder than absolute zero!’
3 return ((temperature - 273) * 1.80 + 32
4

5 if __name__ == ’__main__ ’:
6 try:
7 fahrenheit = KelvintoFahrenheit (-23)
8 print(fahrenheit)
9 except AssertionError as my_error:

10 print(my_error.args)
11

12 # Output
13 (Colder than absolute zero!,)

3

	Introduction to Exceptions
	Topics Covered
	What are Exceptions?
	Exceptions in Python
	Why Use Exceptions?
	Exception Handling Blocks
	Multiple Except Clauses
	The try Statement
	Propagating Exceptions
	Raising Exceptions
	else & finally Clause

	Summary: Possible Execution Paths
	Assertions

