
Python 3 Bits & Bytes, File Compression

Eddie Guo

September 2019

1 Introduction to File Compression
1.1 Topics Covered

(i) Data as bits (ii) Compression (iii) Huffman coding

1.2 Bit

• Bit is basic unit of mem in computer

• 8 bits = 1 byte

• 4 bits = 1 nibble

• 2 bits = 1 crumb

1.3 Characters in Text Files
• ASCII table defs binary rep of 256 (28) diff

chars

• Each char has 8 bit representation: 1 byte

• ASCII table is w/in Unicode table

1.4 Always Need All Those Bits?
• If 1 char = 1 byte, text file w/ 1000 chars con-

tains ∼1kB of data

• What if text file only contains chars ’a’ & ’b’?

– Woudn’t need full byte → just use single
bit: ’a’ = 0, ’b’ = 1

– Using this approach, 1000 a’s & b’s would
take up 1/8 space of normal ASCII rep

2 Data Compression
2.1 Compression Intro
• Basic goal of compression: rep file using fewer

bits, even if we have to store contents in uncon-
ventional format

• Pros: use less mem to store file, transmit files
faster

2.2 Another Example
2.2.1 Method 1
• What if file has chars ’a’, b’, ’n’ (ex: banana)?

• Can use ’a’ = 00, ’b’ = 01, ’c’ = 10 → banana
= 010010001000

• This gives compression rate of 1/4 that of plain-
text file

2.2.2 Better Compression Choice?
• Is there better way to compress text file w/ only

3 chars? YES!

• Assoc most freq character w/ 0, and remaining
w/ 10 & 11

• Compression rate:

– at least 1/3 of chars go from 8 bits to 1 bit
– Remaining chars go from 8 bits to 2 bits

2.3 Calculate Compression Rate
• ni = # times ’i’ occurs (where i = a, b, c)

• n = na + nb + nn

• Suppose ’a’ is most freq. Then na ≥ n/3

• Amount of bits used in compressed string is:
bits = 1 ∗ na + 2 ∗ nb + 3 ∗ nn

= 2 ∗ n− na

≤ 2 ∗ n− n/3

≤ 5/3n

• # bytes is (5/3n)/8 = 0.2083 or less

• Better than 0.25n we got b4 when all 3 chars
were 2 bit seq

1

2.4 Decoding
• Can we decode compressed file when some chars

encoded w/ 1 bit, others w/ 2 bits?

• Decode = 10010011

• ’a’ = 0, ’b’ = 10, ’n’ = 11

•

3 Decoding Tree
3.1 Intro to Decoding Tree

• If no bit seq is beginning of another in encoding,
we can build decoding tree

• 0/1 labels on edges of root-to-leaf path = en-
coding of char in given leaf

• All chars are leaf nodes, all edges are 0/1

• If node not leaf, then it’s an internal node

• Binary trees have at MOST 2 children

3.2 How to Use Decoding Tree

• Decode bit seq using bits to traverse given tree

1. Start at root, follow 0/1 edge according to
next bit in seq

2. Output char at leaf when you reach one

3. Return to root & repeat for next branch

• 001001101 → 00 (o) + 100 (x) + 11 (e) + 01
(n) = oxen

3.3 Build a Decoding Tree

• The key is picking encoding for each char

• Req: no bit seq for any char is the beginning
(prefix) of another bit seq → this type of en-
coding scheme called prefix code

• Desire: chars that occur more freq should have
shorter bit seqs

• Optimization problem: construct decoding
tree to minimize total # of bits used to com-
press file

• This can be achieved using Huffman Trees ∼
trees constructed according to simple greedy
procedure

3.4 Greedy Algorithms

2

• At each step:

– Take best step we can get right now, w/o
regard to eventual optimization

– Hope that by choosing local optimum at
each step, you’ll end up at global optimum

• Ex: count $6.39, using fewest bills & coins

– Greedy algorithm: at each step, take
largest bill/coin that does not overshoot

4 Huffman Coding
4.1 Building a Huffman Tree

1. Do freq count of all chars in file (include count of 1 for EOF sentinel)

(a) Ex: freq[’a’] = 10, freq[’w’] = 2, freq[EOF] = 1

(b) Ultimately, keys will be bytes, not chars

(c) Total freq count of tree is sum of freqs of its leaves

2. Initially, each char is single node in trivial Huffman tree

3. While there is more than 1 tree, merge the 2 w/ the smallest freq counts

(a) Make each tree a child of a new root node

(b) Doesn’t matter which tree is left/right child

(c) # on this new tree is total freq count of all leaves

(d) Repeat: pick 2 trees w/ lowest total freq count, & merge (in case of tie, doesn’t matter which one
you pick)

4. Merge trees T1 & T2 means creating a new root node & setting T1 & T2 as its children

4.2 Summary: Compress the File
• For each char, det its 0/1 compression encoding

by looking at the root-to-leaf path

• Output the seq of 0/1 bits obtained by replac-
ing the char w/ its compressed bits

• Don’t forget the final seq for EOF sentinel

4.3 Summary: Decompress the file
• Starting from root, traverse Huffman tree. Each

bit from input seq dictates when to go L/R

• When you reach a leaf, output the char, return
to root, continue traversing tree according to
next bit(s) in seq

• Quit when you reach the EOF leaf

4.4 Why Include an EOF?
• B/c last byte of compressed file might not be

"complete" (ex: 35 bits in compression seq: 4
bytes & 3 bits, so EOF pads w/ 0); need mul-
tiple of 8 bits to transmit file

• ∴, decoding EOF tells us when to stop

4.5 Considerations
• To decompress a file using this approach, need

to know struc of Huffman tree used to compress
file in 1st place

• When we send compressed file, also need to send
rep of Huffman tree used

4.6 Final Notes
• Huffman compression exploits freqs of chars →

fairly simple compression scheme, but results in
reduced file sizes if file contains subset of the
28 diff bytes (chars); no point in using Huffman
tree if there are 256 diff chars in file

• Huffman compression tends to work best on
plain text files & bitmap images w/ small range
of colours

• Other compression schemes exploit other pat-
terns, & often target spec file types (pics, text,
etc.). Some compressions allow for some data
loss (ex: w/ .jpeg files)

• No compression can make every file smaller

3

	Introduction to File Compression
	Topics Covered
	Bit
	Characters in Text Files
	Always Need All Those Bits?

	Data Compression
	Compression Intro
	Another Example
	Method 1
	Better Compression Choice?

	Calculate Compression Rate
	Decoding

	Decoding Tree
	Intro to Decoding Tree
	How to Use Decoding Tree
	Build a Decoding Tree
	Greedy Algorithms

	Huffman Coding
	Building a Huffman Tree
	Summary: Compress the File
	Summary: Decompress the file
	Why Include an EOF?
	Considerations
	Final Notes

