Python 3 Basics

Eddie Guo
September 2019

1 Introduction to Python Basics
1.1 Topics Covered

(i) Interpreted vs compiled code (iv) Values and variables
(ii) Programming style: comments, PEP8

(v) Introduction to built-in data types & how to
(iii) Simple input/output use them

2 Intro
2.1 Programming — Data + Algorithms

Data strucs + pseudo-code algorithms — programming lang — compiled /interpreted into machine code

e Why are computers dumb? e Program = set of instrucs given to computer.

e Computers understand machine lang (1s & Os;

— They take instructions literally.))
i.e., CPU only understands machine lang).

* Why are computers good? e Unsolvable problems are not computable

— B/c they do things over and over rly fast. e Programs CANNOT exist w/out algorithms

Interpreter (ex: Python 3) Compiler (ex: C++)

e Interpreter translates program line-by-line until

it meets 1st error /end of program. e Translates entire program into machine code ef-

ficiently (execution usually faster).

e Code interpreted every time you run your pro-
gram. e Code only compiled when new executable req.

2.2 Python Program Style Notes
e Always include header.
e In header, always include what your program does.
e Comments improve code readability & maintainability.
— Should explain approach of code (the 'why,” not line-by-line description).
e To check style of helloworld.py, type style helloworld.py in terminal.

==============================
Name: Eddie Guo

ID: 1576381

CMPUT 274, Fall 2019

#

Exercise 1: Hello World.

Description here

#f ==============================

2.3 More Python Notes
e Python is dynamically typed.

— i.e., don’t have to explicitly declare variable along w/ type (C++ is diff).

e Any var not assoc w/ var is periodically deleted from mem by Python’s garbage collector.

3 Python Variable Names

e Python keywords can’t be used as var names e Lower camel case ex: dogsTasteGoodLol
(ex: and, as, in, class).
e Upper camel case ex: MyNameIsJeeeefffff

e Variable names also called identifier. .)
e According to PEP 8, use underscore for multi-

e Underscore ex: hello_world word identifiers.
and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

Figure 1: Common Python 3 keywords

4 Built-In Types & Methods

Immutable means var can’t change in place; a new obj is created for each operation. You must
assign a variable to ref & store the new obj. Else, garbage collector will remove.

4.1 Built-In Types: int, float, complex
e int, float, complex are immutable e -7//3 returns -3 (floored division)

e 5//2 returns 2 (floored division) e 5%2 returns 1 (modulo operator)

4.2 Convert Type

e Can convert type of one type to another (ex: 1ist(), set()).

e Can’t mix types when performing operation (ex: >CMPUT’+12.0 — ’CMPUT’+str(12.0)).

4.3 Built-in Types: bool

e Boolean is immutable — If 1% item is True, don’t eval 2°¢ part.

e Remember the truth tables e Strings are indexed starting from 0

e For’and’, only if both operands True, then True — If myVar=>CMPUT’, then myVar [2]="P"’
— if 1%% item is False, don’t eval 2nd part e replace(old, new, max) method

e For ’or’, only if both operands False, then false e Rem that strip() !=split(char)

4.4

4.5

4.6

String Method: format ()

>>> print (’my number is {:15}!’.format (1))
’my number is 11!’

{:<} - left-justified in field width
{:"} - centerized in field width

{:>} - right-justified in field width
{:015} - pad w/ Os for field width of 15

>>> print (’my number is {:15}!’.format (1))

>>> print (’my number is {:015}!°’.format (1))

my number is 1!
my number is 000000000000001!

{156.2f} - 2 digits after decimal pnt
{0} - mapping 1st element in str to 1st argument in format ()
name = ’Fred’; amount = 5.43

>>> print (’The person {0:°015} has {1:>07.2f} dollars’.format (name,
The person 00000Fred000000 has 00005.4 dollars

"nn NOTES :

- 1st arg in format centerized w/ Fred in middle,

filled by Os, 5 O0s on left,
- 2nd arg in format right-aligned,

6 0s on right

padded w/ Os,

amount)

field width = 15, empty spaces

width = 7, 2 decimal places

- format () may come in handy for making tables

Built-In Type: 1list

List is seq of values of any type & is mutable.
Operators +, * concatenate list; : slices lists

- [1,2,3]+[4,5,6] returns [1, 2, 3, 4,
5, 6]

- [1,2,3]*3 returns [1, 2, 3, 1, 2, 3,
1, 2, 3]

k=[1,2,3,4,5,6]
List Methods

append () adds item at end of list
insert(i, item) inserts item at i*" pos of list

extend(iterable) appends all items in iter-
able
pop() removes & returns last item in list

— pop(i) removes & returns i*h
list

element in

e del list[i] removes it element in list

>>> 1ist (?CMPUT?)

[’C’, ’M’, ’P’, ’U’, ’T’]

— k[2:3] returns [3, 4]
— k[2:] returns [3, 4, 5, 6]
— k[:4] returns [1, 2, 3, 4]

e Membership operator in asks whether item is

in list.

— 3 in [1,2,3,4,5,6] returns True
— len([1,2,3,4,5,6]) returns 6

— del k[2] deletes item at index 2 from k
remove (item) removes 15* occurrence of item
sort () modifies list to be sorted
reverse () reverses order of items in list

count (item) returns number of occurrences of
item in list

index (item) returns index at 15 occurrence of
item

LU C R

>>> 21,2,3,,5%.split(’,’)

[71)’ 72;’ :37,):, ;5)]
>>>’the cat sat on the mat’.split ()
[’the’, ’cat?’, ’sat’, ’on’, ’the’, ’mat’]

>>>’the,cat,sat ,on,the,mat’.split(’,’,3)
[’the’, ’cat’, ’sat’, ’on,the,mat’]

>>> > . join([’1°,°27,
’L 2 3 45

>>> 22 join([’17,°27,
’12345°

>>> 2xx’.join([’1°,°27,
P21 kk2%kk3kk4 kx5

>37’;4>’75;])
a37’:4a,75:])

>3:,74>’:57])

>>> x = [1,2,3,4,5]
>>> x.reverse ()

>>> x

[5, 4, 3, 2, 1]

Note that del x[len(x)-1] removes the same value as x.pop()

However, del x[len(x)-1] != x.pop()

4.7 Built-In Types: tuple, set

e Tuple is immutable list
— ex: (2, True, ’cat’, [1,2,3], 3.5)

e Can’t change content of tuple, but can change
mutable objs in tuple

— i.e., can change content of set in tuple

e Set is unordered collection of unique immutable
objs, but set itself is mutable

— ex: 2, True, ’cat’, 3.5
— CANNOT include lists in sets

>>> k = (2, True,
>>> print (k[2])
>>> k[2].append (4)
>>> print (k[2])
[1, 2, 3]

[1, 2, 3, 4]

’cat’, [1,2,3])

5 Aliasing
e x=y does NOT make copy of y

e x=y makes x ref same obj that y refs CURRENTLY

e Sets do not support indexing
e Sets support methods like:

— union or |

— intersection or &
— issubset or <=

— difference or -

— add(item), remove(item), clear(),
pop Q)

e Use aliasing ONLY as 2nd name for MUTABLE obj.

— Aliasing for immutable objs is tricky.

e Aliasing can cause problems:

>>> first_var = ’CMPUT’
>>> second_var = first_var
>>> first_var = first_var + 22757

>>> print(first_var)
>>> print(second_var)
CMPUT 275

CMPUT

	Introduction to Python Basics
	Topics Covered

	Intro
	Programming = Data + Algorithms
	Python Program Style Notes
	More Python Notes

	Python Variable Names
	Built-In Types & Methods
	Built-In Types: int, float, complex
	Convert Type
	Built-in Types: bool
	String Method: format()
	Built-In Type: list
	List Methods
	Built-In Types: tuple, set

	Aliasing

